2021最新 RocketMQ面试题精选(附刷题小程序)

推荐使用小程序阅读

为了能让您更加方便的阅读
本文所有的面试题目均已整理至小程序《面试手册
可以通过微信扫描(或长按)下图的二维码享受更好的阅读体验!


最近梳理汇总了Java面试常遇到的面试题;并将其开发成小程序《面试手册》,方便大家阅读,可微信扫描文章开头的二维码使用;包含了Java基础并发JVM数据库SpringSpringMVCSpringBootSpringCloud设计模式MQLinuxDocker等多个类型,资料持续更新中;侵权联删。

本人不才,如出现错误或者不准确的地方,望各位大神指正。


文章目录


1. 消息队列基础

为什么使用MQ?优点?常用场景?

  • 简答

    • 异步处理 - 相比于传统的串行、并行方式,提高了系统吞吐量。
    • 应用解耦 - 系统间通过消息通信,不用关心其他系统的处理。
    • 流量削锋 - 可以通过消息队列长度控制请求量;可以缓解短时间内的高并发请求。
    • 日志处理 - 解决大量日志传输。
    • 消息通讯 - 消息队列一般都内置了高效的通信机制,因此也可以用在纯的消息通讯。比如实现点对点消息队列,或者聊天室等。
  • 详答

    主要是:解耦异步削峰

    • 解耦
      A 系统发送数据到 BCD 三个系统,通过接口调用发送。如果 E 系统也要这个数据呢?那如果 C 系统现在不需要了呢?A 系统负责人几乎崩溃…A 系统跟其它各种乱七八糟的系统严重耦合,A 系统产生一条比较关键的数据,很多系统都需要 A 系统将这个数据发送过来。如果使用 MQ,A 系统产生一条数据,发送到 MQ 里面去,哪个系统需要数据自己去 MQ 里面消费。如果新系统需要数据,直接从 MQ 里消费即可;如果某个系统不需要这条数据了,就取消对 MQ 消息的消费即可。这样下来,A 系统压根儿不需要去考虑要给谁发送数据,不需要维护这个代码,也不需要考虑人家是否调用成功、失败超时等情况。

      就是一个系统或者一个模块,调用了多个系统或者模块,互相之间的调用很复杂,维护起来很麻烦。但是其实这个调用是不需要直接同步调用接口的,如果用 MQ 给它异步化解耦。

    • 异步
      A 系统接收一个请求,需要在自己本地写库,还需要在 BCD 三个系统写库,自己本地写库要 3ms,BCD 三个系统分别写库要 300ms、450ms、200ms。最终请求总延时是 3 + 300 + 450 + 200 = 953ms,接近 1s,用户感觉搞个什么东西,慢死了慢死了。用户通过浏览器发起请求。如果使用 MQ,那么 A 系统连续发送 3 条消息到 MQ 队列中,假如耗时 5ms,A 系统从接受一个请求到返回响应给用户,总时长是 3 + 5 = 8ms。

    • 削峰
      减少高峰时期对服务器压力。

使用MQ有什么缺点?

  • 系统可用性降低
    系统引入的外部依赖越多,越容易挂掉。本来你就是 A 系统调用 B、C、D三个系统的接口就好了,人 A、B、C、D四个系统好好的,没啥问题,你偏加个MQ进来,万一MQ挂了咋整,MQ一挂,整套系统崩溃的,你不就完了?如何保证消息队列的高可用,可以点击这里查看。

  • 系统复杂度提高
    硬生生加个MQ进来,你怎么保证消息没有重复消费?怎么处理消息丢失的情况?怎么保证消息传递的顺序性?头大头大,问题一大堆,痛苦不已。

  • 一致性问题
    A系统处理完了直接返回成功了,人都以为你这个请求就成功了;但是问题是,要是 B、C、D 三个系统那里,B、D两个系统写库成功了,结果C系统写库失败了,咋整?你这数据就不一致了。

所以消息队列实际是一种非常复杂的架构,引入MQ有很多好处,但是也得针对它带来的坏处做各种额外的技术方案和架构来规避掉,做好之后,你会发现,系统复杂度提升了一个数量级,也许是复杂了10倍。但是关键时刻,还是得用的。

Kafka、ActiveMQ、RabbitMQ、RocketMQ 的区别?

ActiveMQRabbitMQRocketMQKafkaZeroMQ
单机吞吐量比RabbitMQ低2.6w/s(消息做持久化)11.6w/s17.3w/s29w/s
开发语言JavaErlangJavaScala/JavaC
主要维护者ApacheMozilla/SpringAlibabaApacheiMatix,创始人已去世
成熟度成熟成熟开源版本不够成熟比较成熟只有C、PHP等版本成熟
订阅形式点对点(p2p)、广播(发布-订阅)提供了4种:direct, topic ,Headers和fanout。fanout就是广播模式基于topic/messageTag以及按照消息类型、属性进行正则匹配的发布订阅模式基于topic以及按照topic进行正则匹配的发布订阅模式点对点(p2p)
持久化支持少量堆积支持少量堆积支持大量堆积支持大量堆积不支持
顺序消息不支持不支持支持支持不支持
性能稳定性一般较差很好
集群方式支持简单集群模式,比如’主-备’,对高级集群模式支持不好。支持简单集群,'复制’模式,对高级集群模式支持不好。常用 多对’Master-Slave’ 模式,开源版本需手动切换Slave变成Master天然的‘Leader-Slave’无状态集群,每台服务器既是Master也是Slave不支持
管理界面一般较好一般

综上,各种对比之后,有如下建议:

一般的业务系统要引入 MQ,最早大家都用 ActiveMQ,但是现在确实大家用的不多了,没经过大规模吞吐量场景的验证,社区也不是很活跃,所以大家还是算了吧,我个人不推荐用这个了;

后来大家开始用 RabbitMQ,但是确实 erlang 语言阻止了大量的 Java 工程师去深入研究和掌控它,对公司而言,几乎处于不可控的状态,但是确实人家是开源的,比较稳定的支持,活跃度也高;

不过现在确实越来越多的公司会去用 RocketMQ,确实很不错,毕竟是阿里出品,但社区可能有突然黄掉的风险(目前 RocketMQ 已捐给 Apache,但 GitHub 上的活跃度其实不算高)对自己公司技术实力有绝对自信的,推荐用 RocketMQ,否则回去老老实实用 RabbitMQ 吧,人家有活跃的开源社区,绝对不会黄。

所以中小型公司,技术实力较为一般,技术挑战不是特别高,用 RabbitMQ 是不错的选择;大型公司,基础架构研发实力较强,用 RocketMQ 是很好的选择。

如果是大数据领域的实时计算、日志采集等场景,用 Kafka 是业内标准的,绝对没问题,社区活跃度很高,绝对不会黄,何况几乎是全世界这个领域的事实性规范。

消息队列如何选型?

  1. 如果消息队列不是将要构建系统的重点,对消息队列功能和性能没有很高的要求,只需要一个快速上手易于维护的消息队列,建议使用RabbitMQ。

  2. 如果系统使用消息队列主要场景是处理在线业务,比如在交易系统中用消息队列传递订单,需要低延迟和高稳定性,建议使用RocketMQ。

  3. 如果需要处理海量的消息,像收集日志、监控信息或是埋点这类数据,或是你的应用场景大量使用了大数据、流计算相关的开源产品,那Kafka是最适合的消息队列。

MQ 有哪些常见问题?如何解决这些问题?

MQ 的常见问题有:

  • 消息的顺序问题

    消息有序指的是可以按照消息的发送顺序来消费。

    假如生产者产生了 2 条消息:M1、M2,假定 M1 发送到 S1,M2 发送到 S2,如果要保证 M1 先于 M2 被消费,怎么做?

    img

    解决方案:

    • 保证生产者 - MQServer - 消费者是一对一对一的关系

      img

      缺陷:

      • 并行度就会成为消息系统的瓶颈(吞吐量不够)
      • 更多的异常处理,比如:只要消费端出现问题,就会导致整个处理流程阻塞,我们不得不花费更多的精力来解决阻塞的问题。 (2)通过合理的设计或者将问题分解来规避。
      • 不关注乱序的应用实际大量存在
      • 队列无序并不意味着消息无序 所以从业务层面来保证消息的顺序而不仅仅是依赖于消息系统,是一种更合理的方式。
  • 消息的重复问题

    造成消息重复的根本原因是:网络不可达。

    所以解决这个问题的办法就是绕过这个问题。那么问题就变成了:如果消费端收到两条一样的消息,应该怎样处理?

    消费端处理消息的业务逻辑保持幂等性。只要保持幂等性,不管来多少条重复消息,最后处理的结果都一样。保证每条消息都有唯一编号且保证消息处理成功与去重表的日志同时出现。利用一张日志表来记录已经处理成功的消息的 ID,如果新到的消息 ID 已经在日志表中,那么就不再处理这条消息。

依托消息中间件如何实现异步?

引入了MQ后,用来的依赖关系转移了,从系统之间的依赖,变成系统都依赖MQ

A调用B,只需要向MQ发送一条消息,A就认为自己的工作完成了。不用像之前调用B一样等着B处理一堆的业务逻辑和数据库操作。

B会从MQ中读取A发送的特定消息,完成自己该做的事情。

这样就实现了A异步调用B

2. RocketMQ精选面试题

RocketMQ由哪些角色组成,每个角色作用和特点是什么?

角色作用
Nameserver无状态,动态列表;这也是和zookeeper的重要区别之一。zookeeper是有状态的。
Producer消息生产者,负责发消息到Broker。
Broker就是MQ本身,负责收发消息、持久化消息等。
Consumer消息消费者,负责从Broker上拉取消息进行消费,消费完进行ack。

RocketMQ中的Topic和JMS的queue有什么区别?

queue 就是来源于数据结构的 FIFO 队列。而 Topic 是个抽象的概念,每个 Topic 底层对应N个 queue,而数据也真实存在 queue 上的。

RocketMQ Broker中的消息被消费后会立即删除吗?

不会,每条消息都会持久化到CommitLog中,每个Consumer连接到Broker后会维持消费进度信息,当有消息消费后只是当前Consumer的消费进度(CommitLog的offset)更新了。

4.6版本默认48小时后会删除不再使用的CommitLog文件

  • 检查这个文件最后访问时间
  • 判断是否大于过期时间
  • 指定时间删除,默认凌晨4点

源码如下:

/**
 * {@link org.apache.rocketmq.store.DefaultMessageStore.CleanCommitLogService#isTimeToDelete()}
 */
private boolean isTimeToDelete() {
    // when = "04";
    String when = DefaultMessageStore.this.getMessageStoreConfig().getDeleteWhen();
    // 是04点,就返回true
    if (UtilAll.isItTimeToDo(when)) {
        return true;
    }
 // 不是04点,返回false
    return false;
}
/**
 * {@link org.apache.rocketmq.store.DefaultMessageStore.CleanCommitLogService#deleteExpiredFiles()}
 */
private void deleteExpiredFiles() {
    // isTimeToDelete()这个方法是判断是不是凌晨四点,是的话就执行删除逻辑。
    if (isTimeToDelete()) {
        // 默认是72,但是broker配置文件默认改成了48,所以新版本都是48。
        long fileReservedTime = 48 * 60 * 60 * 1000;
        deleteCount = DefaultMessageStore.this.commitLog.deleteExpiredFile(72 * 60 * 60 * 1000, xx, xx, xx);
    }
}                                                                     
/**
 * {@link org.apache.rocketmq.store.CommitLog#deleteExpiredFile()}
 */
public int deleteExpiredFile(xxx) {
    // 这个方法的主逻辑就是遍历查找最后更改时间+过期时间,小于当前系统时间的话就删了(也就是小于48小时)。
    return this.mappedFileQueue.deleteExpiredFileByTime(72 * 60 * 60 * 1000, xx, xx, xx);
}

RocketMQ消费模式有几种?

消费模型由 Consumer 决定,消费维度为 Topic。

  • 集群消费

    • 一条消息只会被同Group中的一个Consumer消费

    • 多个Group同时消费一个Topic时,每个Group都会有一个Consumer消费到数据

  • 广播消费
    消息将对一 个 Consumer Group 下的各个 Consumer 实例都消费一遍。即即使这些 Consumer 属于同一个 Consumer Group ,消息也会被 Consumer Group 中的每个 Consumer 都消费一次。

RocketMQ消息是push还是pull?

RocketMQ没有真正意义的push,都是pull,虽然有push类,但实际底层实现采用的是长轮询机制,即拉取方式

broker端属性 longPollingEnable 标记是否开启长轮询。默认开启

源码如下:

// {@link org.apache.rocketmq.client.impl.consumer.DefaultMQPushConsumerImpl#pullMessage()}
// 看到没,这是一只披着羊皮的狼,名字叫PushConsumerImpl,实际干的确是pull的活。
// 拉取消息,结果放到pullCallback里
this.pullAPIWrapper.pullKernelImpl(pullCallback);

为什么要主动拉取消息而不使用事件监听方式?

事件驱动方式是建立好长连接,由事件(发送数据)的方式来实时推送。

如果broker主动推送消息的话有可能push速度快,消费速度慢的情况,那么就会造成消息在 Consumer 端堆积过多,同时又不能被其他 Consumer 消费的情况。而 pull 的方式可以根据当前自身情况来 pull,不会造成过多的压力而造成瓶颈。所以采取了 pull 的方式。

Broker如何处理拉取请求的?

Consumer首次请求Broker
Broker中是否有符合条件的消息

    • 响应 Consumer
    • 等待下次 Consumer 的请求
  • 没有

    • DefaultMessageStore#ReputMessageService#run方法
    • PullRequestHoldService 来 Hold 连接,每个 5s 执行一次检查 pullRequestTable 有没有消息,有的话立即推送
    • 每隔 1ms 检查 commitLog 中是否有新消息,有的话写入到 pullRequestTable
    • 当有新消息的时候返回请求
    • 挂起 consumer 的请求,即不断开连接,也不返回数据
    • 使用 consumer 的 offset,

RocketMQ如何做负载均衡?

通过Topic在多Broker中分布式存储实现。

producer端

发送端指定 message queue发送消息到相应的 broker,来达到写入时的负载均衡

  • 提升写入吞吐量,当多个producer同时向一个 broker 写入数据的时候,性能会下降
  • 消息分布在多 broker 中,为负载消费做准备

默认策略是随机选择:

  • producer 维护一个 index
  • 每次取节点会自增
  • index 向所有 broker 个数取余
  • 自带容错策略

其他实现:

  • SelectMessageQueueByHash

  • hash的是传入的args

  • SelectMessageQueueByRandom

  • SelectMessageQueueByMachineRoom 没有实现

也可以自定义实现MessageQueueSelector接口中的select方法

MessageQueue select(final List<MessageQueue> mqs, final Message msg, final Object arg);

consumer端

采用的是平均分配算法来进行负载均衡。

其他负载均衡算法

  • 平均分配策略(默认)(AllocateMessageQueueAveragely)
  • 环形分配策略(AllocateMessageQueueAveragelyByCircle)
  • 手动配置分配策略(AllocateMessageQueueByConfig)
  • 机房分配策略(AllocateMessageQueueByMachineRoom)
  • 一致性哈希分配策略(AllocateMessageQueueConsistentHash)
  • 靠近机房策略(AllocateMachineRoomNearby)

当消费负载均衡consumer和queue不对等的时候会发生什么?

Consumer 和 queue 会优先平均分配,如果 Consumer 少于 queue 的个数,则会存在部分 Consumer 消费多个 queue 的情况,如果 Consumer 等于 queue 的个数,那就是一个 Consumer 消费一个 queue,如果 Consumer 个数大于 queue 的个数,那么会有部分 Consumer 空余出来,白白的浪费了。

消息重复消费如何解决?

影响消息正常发送和消费的重要原因是网络的不确定性。

  • 引起重复消费的原因

    • ACK
      正常情况下在consumer真正消费完消息后应该发送ack,通知broker该消息已正常消费,从queue中剔除

      当ack因为网络原因无法发送到broker,broker会认为词条消息没有被消费,此后会开启消息重投机制把消息再次投递到consumer

    • 消费模式
      在CLUSTERING模式下,消息在broker中会保证相同group的consumer消费一次,但是针对不同group的consumer会推送多次

  • 解决方案

    • 数据库表

      处理消息前,使用消息主键在表中带有约束的字段中insert

    • Map

      单机时可以使用map ConcurrentHashMap -> putIfAbsent guava cache

    • Redis

      分布式锁搞起来。

如何让 RocketMQ 保证消息的顺序消费?

首先多个 queue 只能保证单个 queue 里的顺序,queue 是典型的 FIFO,天然顺序。多个 queue 同时消费是无法绝对保证消息的有序性的。所以总结如下:

同一 topic,同一个 QUEUE,发消息的时候一个线程去发送消息,消费的时候 一个线程去消费一个 queue 里的消息。

怎么保证消息发到同一个queue?

Rocket MQ给我们提供了MessageQueueSelector接口,可以自己重写里面的接口,实现自己的算法,举个最简单的例子:判断i % 2 == 0,那就都放到queue1里,否则放到queue2里。

for (int i = 0; i < 5; i++) {
    Message message = new Message("orderTopic", ("hello!" + i).getBytes());
    producer.send(
        // 要发的那条消息
        message,
        // queue 选择器 ,向 topic中的哪个queue去写消息
        new MessageQueueSelector() {
            // 手动 选择一个queue
            @Override
            public MessageQueue select(
                // 当前topic 里面包含的所有queue
                List<MessageQueue> mqs,
                // 具体要发的那条消息
                Message msg,
                // 对应到 send() 里的 args,也就是2000前面的那个0
                Object arg) {
                // 向固定的一个queue里写消息,比如这里就是向第一个queue里写消息
                if (Integer.parseInt(arg.toString()) % 2 == 0) {
                    return mqs.get(0);
                } else {
                    return mqs.get(1);
                }
            }
        },
        // 自定义参数:0
        // 2000代表2000毫秒超时时间
        i, 2000);
}

RocketMQ如何保证消息不丢失?

首先在如下三个部分都可能会出现丢失消息的情况:

  • Producer端
  • Broker端
  • Consumer端

Producer端如何保证消息不丢失

  • 采取send()同步发消息,发送结果是同步感知的。

  • 发送失败后可以重试,设置重试次数。默认3次。

    producer.setRetryTimesWhenSendFailed(10);

  • 集群部署,比如发送失败了的原因可能是当前Broker宕机了,重试的时候会发送到其他Broker上。

Broker端如何保证消息不丢失

  • 修改刷盘策略为同步刷盘。默认情况下是异步刷盘的。

    flushDiskType = SYNC_FLUSH

  • 集群部署,主从模式,高可用。

Consumer端如何保证消息不丢失

  • 完全消费正常后在进行手动ack确认。

RocketMQ的消息堆积如何处理?

首先要找到是什么原因导致的消息堆积,是 Producer 太多了,Consumer 太少了导致的还是说其他情况,总之先定位问题。

然后看下消息消费速度是否正常,正常的话,可以通过上线更多 Consumer 临时解决消息堆积问题

如果Consumer和Queue不对等,上线了多台也在短时间内无法消费完堆积的消息怎么办?

  • 准备一个临时的 topic
  • queue 的数量是堆积的几倍
  • queue 分布到多 Broker 中
  • 上线一台 Consumer 做消息的搬运工,把原来 Topic 中的消息挪到新的 Topic里,不做业务逻辑处理,只是挪过去
  • 上线 N 台 Consumer 同时消费临时 Topic 中的数据
  • 改 bug
  • 恢复原来的 Consumer,继续消费之前的 Topic

堆积消息会超时删除吗?

不会;RocketMQ 中的消息只会在 commitLog 被删除的时候才会消失。也就是说未被消费的消息不会存在超时删除这情况。

堆积的消息会不会进死信队列?

不会,消息在消费失败后会进入重试队列(%RETRY%+ConsumerGroup),18次才会进入死信队列(%DLQ%+ConsumerGroup)。

源码如下:

public class MessageStoreConfig {
    // 每隔如下时间会进行重试,到最后一次时间重试失败的话就进入死信队列了。
 private String messageDelayLevel = "1s 5s 10s 30s 1m 2m 3m 4m 5m 6m 7m 8m 9m 10m 20m 30m 1h 2h";
}

RocketMQ 在分布式事务支持这块机制的底层原理?

分布式系统中的事务可以使用TCC(Try、Confirm、Cancel)、2pc来解决分布式系统中的消息原子性

RocketMQ 4.3+ 提供分布事务功能,通过 RocketMQ 事务消息能达到分布式事务的最终一致

RocketMQ实现方式:

  • Half Message
    预处理消息,当broker收到此类消息后,会存储到RMQ_SYS_TRANS_HALF_TOPIC的消息消费队列中

  • 检查事务状态
    Broker会开启一个定时任务,消费RMQ_SYS_TRANS_HALF_TOPIC队列中的消息,每次执行任务会向消息发送者确认事务执行状态(提交、回滚、未知),如果是未知,Broker会定时去回调在重新检查。

  • 超时
    如果超过回查次数,默认回滚消息。

也就是他并未真正进入Topic的queue,而是用了临时queue来放所谓的half message,等提交事务后才会真正的将half message转移到topic下的queue。

高吞吐量下如何优化生产者和消费者的性能?

  • 开发

    • 同一group下,多机部署,并行消费

    • 单个Consumer提高消费线程个数

    • 批量消费

      • 消息批量拉取
      • 业务逻辑批量处理
  • 运维

    • 网卡调优
    • jvm调优
    • 多线程与cpu调优
    • Page Cache

RocketMQ 是如何保证数据的高容错性的?

  • 在不开启容错的情况下,轮询队列进行发送,如果失败了,重试的时候过滤失败的Broker
  • 如果开启了容错策略,会通过RocketMQ的预测机制来预测一个Broker是否可用
  • 如果上次失败的Broker可用那么还是会选择该Broker的队列
  • 如果上述情况失败,则随机选择一个进行发送
  • 在发送消息的时候会记录一下调用的时间与是否报错,根据该时间去预测broker的可用时间

其实就是send消息的时候queue的选择。源码在如下:

org.apache.rocketmq.client.latency.MQFaultStrategy#selectOneMessageQueue()

任何一台Broker突然宕机了怎么办?

Broker主从架构以及多副本策略。Master 收到消息后会同步给 Slave,这样一条消息就不止一份了,Master 宕机了还有 slave 中的消息可用,保证了MQ的可靠性和高可用性。而且 Rocket MQ4.5.0 开始就支持了 Dlegder 模式,基于 raft的,做到了真正意义的 HA。

Broker把自己的信息注册到哪个NameServer上?

每个Broker向所有的NameServer上注册自己的信息,即每个NameServer上有所有的Broker信息

RocketMQ如何分布式存储海量消息的?

RocketMQ 进程一般称为 Broker,集群部署的各个 Broker收到不同的消息,然后存储在自己本地的磁盘文件中。

任何一台 Broker 突然宕机了怎么办?还能使用吗?消息会不会丢?

RocketMQ的解决思路是Broker主从架构以及多副本策略。

Master收到消息后会同步给Slave,这样一条消息就不止一份了,Master宕机了还有slave中的消息可用,保证了MQ的可靠性和高可用新。

怎么知道有哪些 Broker ?如何知道要连那个Broker?

有个NameServer的概念,是独立部署在几台机器上的,然后所有的Broker都会把自己注册到NameServer上去,NameServer就知道集群里有哪些Broker了!

发送消息到 Broker,会找 NameServer 去获取路由信息
系统要从 Broker 获取消息,也会找 NameServer 获取路由信息,去找到对应的 Broker 获取消息。

NameServer到底可以部署几台机器?为什么要集群化部署?

部署多台,保证高可用性。

集群化部署是为了高可用性,NameServer 是集群里非常关键的一个角色,如果部署一台 NameServer,宕机会导致 RocketMQ 集群出现故障,所以 NameServer 一定会多机器部署,实现一个集群,起到高可用的效果。

系统如何从NameServer获取Broker信息?

系统主动去NameServer上拉取Broker信息及其他相关信息。

如果Broker宕了,NameServer是怎么感知到的?

Broker会定时(30s)向NameServer发送心跳
然后 NameServer会定时(10s)运行一个任务,去检查一下各个Broker的最近一次心跳时间,如果某个Broker超过120s都没发送心跳了,那么就认为这个Broker已经挂掉了。

Broker挂了,系统是怎么感知到的?

主要是通过拉取NameServer上Broker的信息。
但是,因为Broker心跳、NameServer定时任务、生产者和消费者拉取Broker信息,这些操作都是周期性的,所以不会实时感知,所以存在发送消息和消费消息失败的情况,现在 我们先知道,对于生产者而言,他是有 一套容错机制的。

Master Broker 是如何将消息同步给 Slave Broker 的?

RocketMQ 自身的 Master-Slave 模式采取的是 Pull 模式拉取消息。

消费消息时是从Master获取还是Slave获取?

可能从Master Broker获取消息,也有可能从Slave Broker获取消息

  1. 消费者的系统在获取消息的时候会先发送请求到Master Broker上去,请求获取一批消息,此时Master Broker是会返回一批消息给消费者系统的
  2. Master Broker在返回消息给消费者系统的时候,会根据当时Master Broker的 负载情况和Slave Broker的 同步情况,向消费者系统建议下一次拉取消息的时候是从Master Broker拉取还是从Slave Broker拉取。

如果 Slave Broker 挂掉了,会对整个系统有影响吗?

有一点影响,但是影响不太大,因为消息写入全部是发送到Master Broker的,获取消息也可以Master获取,少了Slave Broker,会导致所有读写压力都集中在Master Broker

Master Broker 突然挂了,这样会怎么样?

RocketMQ 4.5 版本之前,用 Slave Broker 同步数据,尽量保证数据不丢失,但是一旦 Master 故障了,Slave 是没法自动切换成 Master 的。
所以在这种情况下,如果 Master Broker 宕机了,这时就得手动做一些运维操作,把 Slave Broker 重新修改一些配置,重启机器给调整为Master Broker,这是有点麻烦的,而且会导致中间一段时间不可用。

RocketMQ 4.5之后支持了一种叫做 Dledger 机制,基于 Raft 协议实现的一个机制。
我们可以让一个 Master Broker 对应多个 Slave Broker, 一旦 Master Broker 宕机了,在多个 Slave 中通过 Dledger 技术 将一个 Slave Broker 选为新的 Master Broker 对外提供服务。
在生产环境中可以是用 Dledger 机制实现自动故障切换,只要10秒或者几十秒的时间就可以完成


微信扫码关注公众号,回复【资料】获取更多学习、面试资料。

相关推荐
©️2020 CSDN 皮肤主题: 编程工作室 设计师:CSDN官方博客 返回首页